Nash Equilibrium Farming game Prisoner's Dilemma Social Dilemmas Public Good Game

Summary

Social Interaction: Where do rules come from?

ECONOMICS

Dr. Kumar Aniket

Bartlett School of Construction & Project Management

Lecture 4

	Farming game		Prisoner's Dilemma 000	Social Dilemmas 000000	Public Good Game 000	Institutions 000	Summary O	
THIS	Lectu	5 F						

Previously,

outcomes followed from people's *own choices* and not from others choices.

Individuals motivated by self-interest can produce outcomes that are beneficial for society e.g. entrepreneurship, innovation if there are "*proper rules*" in place.

However,

Self-interest can also be *harmful* to society. When can self-interest be harmful for society? Can setting up "proper rules" limit the damage?

PRICE OF BEING LATE

Experiment: A *small fine* for picking up children late in some daycare centres in Haifa, Israel in 1998.

 Introduction
 Farming game
 Nash Equilibrium
 Prisoner's Dilemma
 Social Dilemmas
 Public Good Game
 Institutions
 Summary

 OOOOOOOO
 OOOOOOOOO
 OOO
 <t

MAFIA BOSS AND THE CAB DRIVER

Why do mafia bosses pay the taxi driver?

Farming game	Prisoner's Dilemma 000	Social Dilemmas 000000	Public Good Game 000	Institutions 000	Summary O

WHY FOLLOWS RULES?

Why do mafia bosses pay the taxi driver? Why do cars stop at traffic lights? Why do cars stop for pedestrians

When do you choose to steal and when do choose to be honest?

When do we choose to follow the rules and when do we choose to flout (deviate from) them?

CARBON EMISSIONS

Carbon emissions from fossil fuels

Introduction Farming game Nash Equilibrium Prisoner's Dilemma Social Dilemmas Public Good Game 00000000

Summary

GLOBAL AEROSOL EMISSIONS: 1970-2012

NATURAL RESOURCE MANAGEMENT CHALLENGE

Industrial fishing led to depletion of cod stocks off Grand Banks

Introduction

Farming game Nash Equilibrium 000000000 0000

Prisoner's Dilemma 000 Social Dilemma

Public Good Game 000

Institutions 000 Summary O

STRATEGIC SOCIAL INTERACTION

Social interaction: two or more people with *agency* interact and *affect* each other

creates a scope for strategic social interaction

Strategy: Action(s) that people can choose when engaging in a social interaction.

Scope where given an an *environment*, people are aware of the ways that their actions affect others.

Environment types Rules based environments

Decentralised environments (e.g. markets)

Market price falls when it is *flooded* with one crop

Much better for farmers to *specialise* in crops

Anil & Bala can do better if they *specialise* compared to when they both produce the same good.

When they produce different crops, they would both benefit if

each person specialises in the crop that was most suitable for their land.

Specialising in suitable crops will hurt them both

	Farming game ○●○○○○○○○○	Prisoner's Dilemma 000	Social Dilemmas 000000	Public Good Game 000	Institutions 000	Summary O

FARMING GAME

		Ba	la
		Rice	Cassava
ii	Rice	Both produce rice: there is a glut of rice (low price) There is a shortage of cassava Anil not producing cassava, which he is better able to produce	No market glut High prices for both crops Both farmers producing the crop for which they are less suited
Anil	Cassava	No market glut High prices for both crops Both farmers producing the crop for which they are better suited	Both produce cassava: there is a glut of cassava (low price) There is a shortage of rice Bala not producing rice, which he is better able to produce

	Farming game 00●0000000	Prisoner's Dilemma 000	Social Dilemmas 000000	Public Good Game 000	Institutions 000	Summary O

FARMING GAME

		Ba	la
		Rice	Cassava
Anil	Rice	Anil gets 1 Bala gets 3	Both get 2
An	Cassava	Both get 4	Anil gets 3 Bala gets 1

	Farming game 000●000000	1	Prisoner's Dilemma 000	Social Dilemmas 000000	Public Good Game 000	Institutions 000	Summary O
-							

Game

Players: people involved in interaction

Strategies: actions each player can take

Information: what each player knows when choosing their action

Outcomes: every unique combination of actions result in a outcome

Payoffs: benefits associated with each outcome

	Farming game 0000●00000	Prisoner's Dilemma 000	Social Dilemmas 000000	Public Good Game 000	Institutions 000	Summary O

FARMING GAME

Players: Anil & Bala.
Strategies: Rice or Cassava
Information: Don't know what other will choose
Outcomes: 2 × 2 actions result in 4 possible outcomes
Payoffs: depend on market prices and quality of land.

Farming game 00000●0000	Prisoner's Dilemma 000	Social Dilemmas 000000	Public Good Game 000	Institutions 000	Summary O

BEST RESPONSE

Best response: Strategy that yields the highest payoff, given the other player's strategy

Dominant strategy: A best response to all possible strategies of the other player (does not always exist!)

Dominant strategy equilibrium: An outcome of a game in which everyone plays their dominant strategy

DOMINANT STRATEGY

Best response: Strategy that yields the highest payoff, given the other player's strategy *Dominant strategy:* A best response to all possible strategies of the other player (does not always exist!)

Dominant strategy equilibrium: An outcome of a game in which everyone plays their dominant strategy

 Introduction
 Farming game
 Nash Equilibrium
 Prisoner's Dilemma
 Social Dilemmas
 Public Good Game
 Institutions
 Summary

 000000000
 0000
 0000
 000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Dominant Strategy Equilibrium

Best response: Strategy that yields the highest payoff, given the other player's strategy *Dominant strategy:* A best response to all possible strategies of the other player (does not always exist!)

Dominant strategy equilibrium: An outcome of a game in which everyone plays their dominant strategy

Introduction	Farming game	Nash Equilibrium	Prisoner's Dilemma	Social Dilemmas	Public Good Game	Institutions	Summary
00000000	0000000000	0000	000	000000	000	000	0

CROP CHOICE EXAMPLE

Best response:

- If Bala grows rice, Anil's *best response* is to grow cassava.
- If Bala grows cassava, Anil's *best response* is to grow cassava.

	Farming game 000000000●	Prisoner's Dilemma 000	Social Dilemmas 000000	Public Good Game 000	Institutions 000	Summary O

BEST-RESPONSE

Dominant strategy:

- Anil's dominant strategy is to grow cassava.
- Bala's dominant strategy is to grow rice.

Dominant strategy Equilibrium

When Anil and Bala each play their dominant strategy, the outcome is (*Cassava*, *Rice*).

Introduction 00000000	00	Nash Equilibrium ●000	Prisoner's Dilemma 000	Social Dilemmas 000000	Public Good Game 000	Institutions 000	Summary O	
Equii	LIBRIUN	/I						

What is an *equilibrium*?

- A self-perpetuating outcome.
- A system that is at rest
 - If it is shocked, it starts a dynamic process till it comes to rest again

	00		Prisoner's Dilemma 000	Social Dilemmas 000000	Public Good Game 000	Institutions 000	Summary O
NASI	h Eouii	LIBRIUM					

Nash equilibrium: A set of strategies (one per player), such that each player's strategy is the best response to the strategies chosen by everyone else.

In a Nash equilibrium,

no player has an incentive to *deviate* unilaterally.

MULTIPLE NASH EQUILIBRIUM

There may be more than one Nash equilibrium in a game.

 Introduction
 Farming game
 Nash Equilibrium
 Prisoner's Dilemma
 Social Dilemmas
 Public Good Game
 Institutions
 Summary

 00000000
 000000000
 000
 000
 000
 000
 000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <t

COORDINATION PROBLEM

With multiple Nash equilibria, the socially optimal outcome may not be selected.

Society could be *"stuck"* in a *suboptimal equilibria* (2,2).

Requires *coordination* to reach the *optimal equilibria* (4,4).

Introduction	Farming game	Nash Equilibrium	Prisoner's Dilemma	Social Dilemmas	Public Good Game	Institutions	Summary
00000000	0000000000	0000	•00	000000	000	000	0

PRISONER'S DILEMMA

In prisoner's dilemma, a game with a *dominant strategy equilibrium* leads to a *sub-optimal outcome*.

Socially optimal outcome is not achieved

 Introduction
 Farming game
 Nash Equilibrium
 Prisoner's Dilemma
 Social Dilemmas
 Public Good Game
 Institutions
 Summary

 00000000
 0000
 0000
 0000
 0000
 0000
 0000
 0

EXAMPLE: CLIMATE CHANGE

Business as usual (BAU) is the dominant strategy for purely self-interested players An emissions treaty would produce the socially optimal outcome

We are currently stuck on socially sub-optimal equilibria

		U	IS
		Restrict	BAU
na	Restrict	BEST BEST	GOOD WORST
China	BAU	WORST	BAD BAD

Introduction 00000000		Nash Equilibrium 0000	Prisoner's Dilemma 00●	Social Dilemmas 000000	Public Good Game 000	Institutions 000	Summary O
Gam	e Types	5					j
	Pris	soner's dilem			ategy equil otimal outco		

Coordination game: in a game with multiple equilibria occurs when a sub-optimal outcome is a Nash equilibrium implies that society could be stuck in sub-optimal outcome

Introduction 00000000	Farming game	Nash Equilibrium 0000	Prisoner's Dil 000	emma Social Dilemma ©00000	s Public Good Game	Institutions 000	Summary O
Soci	AL DILE	MMAS ·					
		Free rid	C	one person/p osts while ev enefits	-		
	Tragedy	of the Comm		ommon prop ources are offe	5		
				an altruism a olicy resolve			

Introduction		Nash Equilibrium	Prisoner's Dilemma	Social Dilemmas	Public Good Game	Institutions	Summary
00000000		0000	000	O●OOOO	000	000	O
Soci	AL DILE	MMAS ·	•				

Social dilemma:

occur when people do not fully account for the effect their actions has on others

a situation in which actions taken independently by *self-interested* individuals result in a socially *suboptimal outcome*.

e.g. traffic jams, climate change

Social interaction leads to social dilemmas

Games theory is the field that analyses social interaction by modelling people's agency and sheds light on why social dilemmas occur

Introduction 00000000	Farming game	Prisoner's Dilemma 000	Social Dilemmas 00●000	Public Good Game 000	Institutions 000	Summary O
ALTR	UISM					

Social dilemmas arise when players are *selfish* and only care about their own payoffs.

In experiments, many players show altruism by choosing the dominated strategy. *Altruistic preferences* affect the *shape of indifference curves*.

Introduction 00000000		Prisoner's Dilemma 000	Social Dilemmas 000€00	Public Good Game 000	Institutions 000	Summary O
Selfi	ISH					

ALTRUISM

ntroduction Farming game Nash Equilibrium Prisoner's Dilemma Social Dilemmas Public Good Game Institutions Summary

SOCIAL PREFERENCES: OTHER TYPES

Inequality aversion: Disliking outcomes in which some individuals receive more than others

Reciprocity: Being kind/helpful to others who are kind/helpful, and vice versa.

We evaluate whether others have been "*kind*" or "*helpful*" according to social norms (common understanding of how to act in situations when one's actions affect others).

PUBLIC GOODS GAME: FARMING EXAMPLE

Each farmer *chooses* whether to *contribute* to the public good (e.g. irrigation project) or *not contribute*. Contributing has a personal cost, but everyone benefits.

Introduction		Nash Equilibrium	Prisoner's Dilemma	Social Dilemmas	Public Good Game	Institutions	Summary
00000000		0000	000	000000	O●O	000	O
Publ	IC GOO	DS GAM	E				

Public goods game:

Not contributing (free riding) is a dominant strategy. Game with a sub-optimal equilibrium

In public goods experiments:

People were happy to contribute as long as others do (*reciprocity*).

Contributions differ according to social norms.

The ability to identify and *punish free-riders* also increases individual contributions.

Introduction	Farming game	Nash Equilibrium	Prisoner's Dilemma	Social Dilemmas	Public Good Game	Institutions	Summary
00000000		0000	000	000000	00●	000	O
Publ	IC GOO	DS GAM	E				

Better outcomes can arise in *repeated interactions*

... due to social norms, reciprocity, and peer punishment.

Behaving *selfishly* in one period has *consequences* in future periods, so it may no longer be a dominant strategy.

Introduction 00000000	00	1	Prisoner's Dilemma 000	Social Dilemmas 000000	Public Good Game 000	Institutions •00	Summary O	
Soci	al Dili	EMMAS .						

Where do rules comes from?

if people care about one another, social dilemmas are easier to resolve.

... helps us understand the historical examples in which people mutually cooperate for irrigation or enforce the Montreal Protocol to protect the ozone layer, rather than free riding on the cooperation of others.

Introduction	00	Nash Equilibrium	Prisoner's Dilemma	Social Dilemmas	Public Good Game	Institutions	Summary
00000000		0000	000	000000	000	O●O	O
Insti	TUTION	1					

What is an *Institution*?

an environment where rules are followed

Where do these rules come from?

... game theory gives us some answers

Examples:

Firms

Family

University

Institutions: are the *laws* and *social customs* governing the production and distribution of goods and services.

Capitalism: an economic system where the main institutions are *private property, markets,* and *firms*.

Introduction	00	Nash Equilibrium	Prisoner's Dilemma	Social Dilemmas	Public Good Game	Institutions	Summary
00000000		0000	000	000000	000	000	•
SUM	MARY						

Social interactions can be modelled as games players choose best responses to others' strategies

Social dilemmas e.g. prisoners dilemma can be resolved by social preferences, peer punishment, or binding agreements

The rules of the game shape the social interaction and drive social equilibrium outcomes

Multiple Nash equilibria can cause coordination problems

Sub-optimal *dominant strategy equilibria* can cause prisoner's dilemma

Economic and political *institutions* can help achieve socially optimal outcomes